Using Distributed Energy Resources to Supply Reactive Power for Dynamic Voltage Regulation
نویسندگان
چکیده
Distributed energy (DE) resources are power sources located near load centers and equipped with power electronics converters to interface with the grid, therefore it is feasible for DE to provide reactive power (along with active power) locally for dynamic voltage regulation. In this paper, a synchronous condenser and a DE source with an inverter interface are implemented in parallel in a distribution system to regulate the local voltage. Developed voltage control schemes for the inverter and the synchronous condenser are presented. Experimental results show that both the inverter and the synchronous condenser can regulate the local voltage instantaneously although the dynamic response of the inverter is much faster than the synchronous condenser. In a system with multiple DEs performing local voltage regulation, the interaction of multiple DE at different locations under different load levels may have an impact to the control parameter setting for each individual DE control system. Future research is needed to find out the interaction of DEs to identify the optimal control parameter settings with the consideration of many factors such as system configuration, load variation, and so on. Copyright © 2008 Praise Worthy Prize S.r.l. All rights reserved.
منابع مشابه
Model Predictive Control of Distributed Energy Resources with Predictive Set-Points for Grid-Connected Operation
This paper proposes an MPC - based (model predictive control) scheme to control active and reactive powers of DERs (distributed energy resources) in a grid - connected mode (either through a bus with its associated loads as a PCC (point of common coupling) or an MG (micro - grid)). DER may be a DG (distributed generation) or an ESS (energy storage system). In the proposed scheme, the set - poin...
متن کاملA New Procedure for Reactive Power Market Clearing Considering Distributed Energy Resources
Traditionally, conventional generation unit was used to provide ancillary services e.g. reactive power support, and spinning reserve. Nonetheless, with the emergence of highly penetrated distributed energy resources (DERs) systems and considering how beneficial they can be; it appears reasonable to use them as reactive power providers. Therefore, this paper introduces a new procedure for DERs t...
متن کاملAn Advanced Hysteresis Controller to Improve Voltage Profile of Power System with PV Units: A Smart Grid Power Exchange Framework
Unlike traditional power grids, smart grids have the advantage of bidirectional power flow and having distributed generations. Distributed generation systems are usually supplied by renewable sources which can cause unpredicted voltage fluctuations as a result of being intermittent. While traditional compensating devices deal with the problem of voltage fluctuation and reduced power quality wit...
متن کاملFrequency Regulation of AUT Microgrid Using Modified Fuzzy PI Controller for Flywheel Energy Storage System
Usage of flywheel energy storage system (FESS) is a common method for frequency regulation due to its high power injection capacity and long life time. FESS is equipped by two back-to-back inverters including grid-side inverter and machine-side inverter. In conventional method, the machine-side inverter sets the active power and machine flux while grid-side inverter sets the reactive power and ...
متن کاملDetermination of Optimal Allocation and Penetration Level of Distributed Energy Resources Considering Short Circuit Currents
The integration of Distributed Energy Resources (DER) in the distribution network has plenty of advantages if their allocation and Penetration Level (PL) are done appropriately. Hence, the challenge of finding the best allocation and PL of DERs in large distribution networks is an important but intricate problem. This paper proposes a novel methodology to simultaneously determine the optimal lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009